

A Precise Guidance for Fair Local Communities' Development Investments Allocation, Case Study: Damietta Governorate, Egypt

Asmaa Abdel Aty Mohamed Ibrahim

Architecture Department, Faculty of Engineering, Cairo University, 23 El Etihad Square, street 106, Maadi, Cairo, Egypt

asmaaabaty2@gmail.com, asmaaabaty@gmail.com

Abstract

Integrated statistical-theoretical based approaches in decision support promise to support effective investment decision making. From this view, this paper proposes an innovative methodology to digitally indicate the true developmental level of villages (the smallest Egyptian local units), which would accordingly provide a precise guidance for fair investments' allocation according to their needs' priorities. This would be achieved through testing 158 variables; taking Farscour district in Damietta Governorate in Egypt as a case study. Accordingly, this paper comes out with a statistical methodology that enables decision makers' map out the most deteriorated local communities and to set up investment priorities.

Keywords: Socio-cultural Aspects; Urbanization; Local Communities' Needs; Development Challenges; Investment Priorities

eISSN 2398-4295 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: http://dx.doi.org/10.21834/ajbes.v3i9.55

1.0 Introduction

Decision-making is a very complex activity because of the interdependencies which exist between reasoning and making decisions (Johnson-Laird and Shafir, 1993).

2.0 Overview on Decision Theories

When the feasible set of alternatives of a decision consists of a finite number of elements that are explicitly known in the beginning of the solution process, we have an important class of problems called multi criteria evaluation problems. When the number of alternatives of a decision is uncountable infinite, the alternatives are not specified directly, but are defined in terms of decision variables as is usually done in single optimization problems like' linear programming. This type of problem is called a continuous decision problem in which the alternatives are only implicitly known. It is referred to as a multi criteria design problem. Here is a listing of many decision techniques found in the literature; Multi criteria evaluation methods, the outranking approach (Software Electra) by Roy (B. Roy, 1981) and Roy and Vincke (B. Roy and P. Vincke, 1981), other methods developed by some French-Belgian school researchers are: Oreste by Roubens (M. Roubens, 1982) and Pastijn and Leysen (H. Pastijn and J. Leysen, 1989). Others by Newman J.W., 1971), Steuer R. and Choo E.U., 1983; Wierzbicki A., 1980; Zadeh L.A., 1965; Zimmermann H.J., 1991; Zionts S. and Wallenius J., 1976.

3.0 Proposal and Classification of Variables Used in the Statistical Analysis

The variables used in this research were proposed and filtered according to the data available in the Central Agency for Public Mobilization and Statistics (CAPMAS) to 158 variables. These were classified into urban, economic, and social (demographic, educational, health care, cultural, and social services) variables and are shown in table (2). They were collected for the 22 villages and the two cities in Farscour district due to the continuous change in the administrative borders between cities and villages and would thus be all included within the coming statistical analyses.

4.0 Defining Steps for the Proposed Decision Making Process

Since all the above listed variables, which all contribute in defining the developmental level of any planning unit and in defining their requirements were so many and confusing, the statistical analysis was the best method selected to reach the most precise results using the SPSS (Statistical Package for Social Sciences) program by the factor analysis (the principal component method). It is one of the methods that are used for the exploration and the detection of patterning of variables with a view to the discovery of the new concepts, together with confirmatory uses for the testing of hypothesis about the structuring of variables in terms of the expected number of significant factors and factor scores. It classifies all the tested variables into components, each having a percentage for representing the strength of its

correlated variables in affecting the results, called the total variance explained which validates the test when it is above 30 %. The component loadings on the other hand is an absolute number describing the strength of each variable inside these components and is considered effective when its absolute values is 0.5 or above. (Nie et al, 1975). Finally, the factor scores represent the strength of each of the case studies tested in this analysis (with numbers relative to each other). Four main analyses were undertaken according to the following steps.

The following points explain these tests and their results briefly as all the resulting tables cannot be shown in the paper. The author has thus highlighted the main results as follows, with indication of all the factor scores in Table 1 and an example of the component matrix results in Table 2:

Planning Units' Names	Factor scores	Factor scores	Factor scores	Factor scores
-	Step 1	Step 2	Step 3	Step 4
Farscour city	4.09	4.19		
Al Roda city	1.75	1.62		
Sherbas	0.49	0.41	3.00	3.07
Al Rahmna	0.17	0.08	1.41	1.32
Abo Greida	-0.50	-0.45	-0.85	-0.73
El Azazma	-0.62	-0.56	-1.09	-1.05
El Obeidia	-0.33	-0.33	-0.36	-0.39
El Tarha	-0.56	-0.54	-0.84	-0.84
El Barashia	-0.38	-0.36	-0.32	-0.29
El Ghwabein	-0.28	-0.27	-0.04	0.01
Awlad Khalaf	-0.35	-0.36	-0.34	-0.25
El Ghoneimia	0.02	0.00	0.89	0.91
El Dhara	-0.32	-0.31	-0.33	-0.34
El Salemia	-0.61	-0.57	-1.26	-1.24
El Nagareen	-0.44	-0.43	-0.72	-0.72
Kafr El Arab	0.00	-0.05	1.02	0.84
Kafr El Shenawy	-0.50	0.47	-0.77	0.89
El Nasria	0.17	0.16	1.35	1.48
Karam wa Razook	-0.21	-0.17	-0.17	-0.17
El Arbein	-0.40	-0.38	-0.52	-0.55
El Hawarni	-0.24	0.26	0.09	0.06
Meit El Shoyokh	-0.45	0.45	-0.47	-0.44-
El Atwi	0.27	-0.27	0.13	0.10
Hagaga	-0.22	-0.26	0.18	0.10

Table 1: Results for the factor scores of the different statistical steps carried out

- In the first test, all the variables for the 22 villages and the two cities were tested. The first
 component has shown that the total variance explained reached 50% and this is a
 relatively high score. The factor scores revealed that the highest scores were occupied
 by the cities followed by sherbas, whereas the less developed villages is clearly the one
 with the lowest factor score, which is El Azazma. From the component matrix, the highest
 component loadings were for the social variables (educational services) followed by the
 economic and demographic variables, as shown in table (2).
- In the second test, another run was performed after excluding all the weak variables whose component loadings were less than 0.5 to ensure the accuracy of these results.

The variables entered were 90 variables. The results have yielded the same findings explained in the first test.

- In the third test, all the variables were tested but without the two cities, to ensure that their data do not affect the rest of the results. The total variance explained here was 30.45%, and the highest factor score was for sherbas and the lowest one was for El Azazma. From the component matrix, the highest component loadings were for the social variables (educational services) followed by the economic and demographic variables.
- In the fourth test, only strong variables including 61 variables, whose component loadings were more than 0.5, were tested to ensure the accuracy of these results. The results have yielded the same findings explained in the third test.

	Urban variables		Social variables		Economic variables
0.450	Length of paved road		Social (Demographic variables)	0.596	Number of commercial buildings
-0.089	Length of smoothed road	0.968	Number of population 1986	0.911	Number of industrial buildings(factories/wor kshops)
0.713	Length of unsmoothed road	0.944	Number of population 1996	-0.076	Value of exported products
		-0.338	Annual Growth rate	-0.092	Value of local products
		-0.163	Percentage from district population	0.229	Local income
		-0.265	Average family size	0.179	Number of touristic rooms
		0.774	Number of families 1996 Number of	0.271	Number of touristic beds Number of annual
		0.944	population 2002	0.876	touristic visitors
		0.944	population 2007 Estimated Number	0.005	females Number of owners-
		0.944	of population 2012	0.072	males
		0.944	of population 2017 Estimated Number	0.576	males and females
		0.944	of population 2022 Social (Educational	-0.075	(feddan-thousands) Cultivated land area-
			services)	0.138	kirates

Table 2: Resulting component matrix from the first test

0.639	Number of primary schools	-0.033	Cultivated land area- sahm
0.501	Number of Islamic Azhari primary schools	0.171	Crop composition (cultivated area- feddans)
0.791	Total number of primary schools	0.086	Crop composition (cultivated area- kirates)
0.699	number of preparatory schools	-0.050	Crop composition (cultivated area-sahm)
0.005	Number of Islamic Azhari preparatory	0.570	Number of chicken labs
0.825	schools Total number of	0.576	Number of eggs from
0.835	preparatory schools Number of	-0.075	chicken labs Number of produced
0.746	secondary schools Number of Islamic	0.138	honey cells
0.825	Azhari secondary schools	-0.033	Average honey cells production
0.882	Total number of secondary schools	0 171	Number of livestock- milk
0.002	Number of	0.111	Number of livestock-
0.838	school	0.086	meat- female
	(primary-		Number of livestock-
0.986	secondary)	-0.050	
0.988	institutes	0.430	livestock-meat
0.979	Number of faculties	-0.109	Coffee production- tons
	Number of female teachers (primary-		Commercial electricity
0.993	preparatory- secondary)	0.606	consumption(Kw/year)
	Number of male teachers (primary-		Number of commercial
0.911	preparatory- secondary)	0.589	network
0.912	Total number of teachers	0.212	Number of connected families in electric
			· · · · · · · · · · · · · · · · · · ·

			network
0.911	Number of male students in first primary	0.451	Residential electricity consumption(Kw/year)
0 912	Number of female students in first primary	0 980	Industrial electricity consumption(Kw/year)
0.012	Total number of students in first	0.000	Number of residential members connected
0.913	primary Total number of male students in all	0.565	to sewage system Number of industrial members connected
0.992	stages Total number of	0.817	to sewage system Number of houses
0.990	all stages Number of enrolled students (primary-	0.512	pipes Total number of houses connected to
0.992	preparatory- secondary) Number of oprolled		sewage pipes or systems
0.992	students	0.971	consumption Number of families
0.965	Number of illiterates	0.973	connected to water network
-0.060	Number of literacy target groups	0.735	units connected to water network
-0 025	Number of enrolled in literacy classes - females	0 843	Number of members in water network
0.020	Number of enrolled in literacy classes -	0.010	Number of residents connected to
0.146	males Number of pass in	0.535	telephone network Number of non-
0.078	females	0.713	telephone network
	Number of fail in literacy classes - males		connected to communication
-0.237	Number of un-	0.935	network Number of non-
-0.059	enrolled in literacy	0.813	residents connected to

	classes - females		communication network
0.075	Number of un- enrolled in literacy classes - males	0.871	Number of post offices- agencies
	Social (Healthcare services)	0.500	Number of governmental post offices
0.040	Number of children under 5 suffering	0.070	Number of private
-0.012	from mainutrition	0.373	Number of computers-
0.694	children under 5	0.895	residents
0.819	Death rate in children under 1 Death rate in	0.867	Number of computers- governmental
0.726	pregnant women Number of nurses		
	for pregnant		
0.047	women		
0.874	Monthly birth rate Number of enrolled		
0.847	methods-Bills Number of enrolled		
	in family planning		
0.910	methods-loop		
	Number of enrolled		
	in family planning		
0.859	methods-other		
0.904	I otal number of		
	enrolled in family		
	planning methods		
	Number of		
	honofite from from		
	vaccination		
0 460	services-females		
0.100	Number of beds in		
0.947	hospitals		
	Number of		
	residents		
0.886	benefitting from		

	maternity and
	childhood services
	Number of mothers
0.867	taking vaccinations
	Number of
	residents aoina to
0.021	clinics
	Number of
	residents
	benefitting from
0 708	pregnancy services
0.100	Number of
	nregnant women
	suffering from
0 885	Anaomia
0.000	Number of doctors
0.023	Number of
0 137	nurseries
0.137	Number of nurses
0.950	Number of medical
0 871	helpers
0.071	Number of
0 333	number of
0.332	No. of labe' workers
0.341	Number of
	modical
0 886	administrations
0.000	Number of
0.260	
0.209	SUCIDIISIS
	Nulliber of
0 702	technicians in
0.795	nospitais Number of
0.060	
-0.000	Total number of
0.000	workers and
0.863	neipers in nospitais
0.000	
0.882	units
	Social
	(Entertainment
	services)

0.871	Number of clubs
	Number of youth
0.092	centres
	Number of playing
0.387	courts
	Number of sports'
0.310	centres
0.312	Number of local
	gathering nodes
	Social (cultural
	services)
	Number of public
0.814	libraries
	Number of cultural
0.899	centres
0.404	Number of children
0.104	libraries
0.961	Number of theatres
0.886	Number of cinemas
	Number of
0 000	distributed dally
-0.022	Journals Social (accial
	Number of eivil
	societies'
0 397	organizations
0.001	Number of
	members in these-
0 694	female
0.001	Number of
	members in these-
0.899	male
	Number of
	members in these-
0.863	kids female
	Number of
	members in these-
0.911	kids male
	Number of families
	benefiting from their
0.353	services
0.408	Number of citizens

	benefiting from their
	services
	Number of families
	benefiting from
	productive family
-0.159	project
	Number of
	governmental
0.632	social units
	Number benefiting
	from exceptional
-0.176	pensions
	Number benefiting
	from permanent
0.930	pensions
	Daily consumed
0.963	flour(tons)
	Daily consumed
0.943	gas
	Number of
	commercial
0.574	markets
	Number of basic
0.971	food supply cards
	Number of partial
	financed food
0.724	supply cards
0.723	Number of totally
	financed food
	supply cards

It is clear from the previous statistical analyses that the two main cities in Farscour district are dominant and represent a separate developmental entity isolated from the rest of the villages existing within its administrative border, and which are much deteriorated. This represents a clear proof for the extreme centralization that Farscour and Al Rowda cities have full control of. This was obviously clear from the results of the four tests which yielded the same findings with or without the cities, as most of the factor scores of the villages were negative, and have slightly increased after excluding the cities and the weak variables.

6.0 Conclusion

Multi-sectorial systems, such as cities and local communities' entities (villages), face strategic challenges of optimal development due to the complexity of interacting perspectives, and preferences of decision-makers and stakeholders. From this view, this paper has presented an integrated statistical-theoretical based approach in decision support to generate effective results and to guarantee fair investment allocation plans. This has been achieved through testing 158 variables classified into urban, social and economic variables by the factor analysis (principal component) using the SPSS program on the local units and cities comprising Farscour district in Damietta Governorate to end up with a precise numerical value for each planning unit describing its developmental level as compared to each other.

Acknowledgement

I would like to thank Dr. Tarek Abdel Latif Aboul Atta, for giving be the opportunity to work in this research as part of a project undergone by his Planning Consultancy Office, and for his supervision and valuable comments throughout all the procedures of this work. The research was fully funded by the author.

References

Johnson-Laird, P.N., Shafir, E. (1993). The interaction between reasoning and decision-making: An introduction. *International Journal of Cognitive Science* 49 (1/2).

Newman J.W. (1971). Management Applications of Decision Theory, Harper & Row.

Nie N. et al (1975), "SPSS: Statistical package for the social sciences", USA: Mc Graw-Hill, 276-470.

Pastijn H. and Leysen J. (1989). Constructing an outranking relation with ORESTE, Mathl. *Compute. Modelling* 12 (IO/II), 1255-1268.

Roubens M. (1982). Preference relations on actions and criteria in multi criteria decision making, *European Journal of Operational Research*, 10, 51-55.

Roy B. and Vincke P. (1981). Multi criteria analysis: Survey and new directions, *European Journal of Operational Research* 8, 207-218

Roy B., (1981). How outranking relation helps multiple criteria decision making, *Topics in Multiple Criteria Decision Making* (ed. by J. Cochrane and M. Zeleny). University of South Carolina Press, 179-201.

Steuer R. and Choo E.U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming, *Mathematical* Programming, 26, 326-344.

Wierzbicki A. (1980). The use of reference objectives in multi objective optimization, *Topics in Multiple* Objective *Decision Making: Theory* and *Application* (ed. by G. Fandel and T. Gal), Springer-Verlag.

Zadeh L.A., (1965). Fuzzy sets, Information and Control 8 (3), 338-353.

Zimmermann H.J. (1991). *Fuzzy Set Theory and Its Applications*. (2nd ed.), Kluwer, Boston, MA.

Zionts S. and Wallenius J. (1976). An interactive programming method for solving the multiple criteria problem, *Management Science*, 22, 652-663.